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Efficient and Secure Outsourcing of Differentially
Private Data Publishing with Multiple Evaluators
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Abstract—Since big data becomes a main impetus to the next generation of IT industry, data privacy has received considerable attention
in recent years. To deal with the privacy challenges, differential privacy has been widely discussed and related private mechanisms are
proposed as privacy-enhancing techniques. However, with today’s differential privacy techniques, it is difficult to generate a sanitized
dataset that can suit every machine learning task. In order to adapt to various tasks and budgets, different kinds of privacy mechanisms
have to be implemented, which inevitably incur enormous costs for computation and interaction. To this end, in this paper, we propose
two novel schemes for outsourcing differential privacy. The first scheme efficiently achieves outsourcing differential privacy by using our
preprocessing method and secure building blocks. To support the queries from multiple evaluators, we give the second scheme that
employs a trusted execution environment to aggregately implement privacy mechanisms on multiple queries. During data publishing,
our proposed schemes allow providers to go off-line after uploading their datasets, so that they achieve a low communication cost which
is one of the critical requirements for a practical system. Finally, we report an experimental evaluation on UCI datasets, which confirms
the effectiveness of our schemes.

Index Terms—Differential privacy, cloud computing, outsourcing, encryption
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1 INTRODUCTION

There is a general consensus that we are currently in the
era of big data, with tremendous amounts of information
being collected by various organizations and entities. Often,
these data providers may wish to contribute their data to
studies involving tasks such as statistical analysis, classi-
fication, and prediction. Because cloud service providers
(CSPs) offer data providers (owners) great flexibility with
respect to computation and storage capabilities, CSPs are
presently the most popular avenue, through which data
providers can share their data. However, the risk of leaking
individuals’ private information with the straightforward
uploading of data providers’ data (which may contain
sensitive information such as medical or financial records,
addresses and telephone numbers, or preferences of various
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• This paper is the extended version of the conference paper [1].

kinds that the individuals may not want exposed) to CSPs is
unacceptable. In such a situation, differential privacy (DP)
has been considered as a privacy standard not only for
achieving an acceptable trade-off between data usability and
data privacy. As shown in Fig. 1, there are generally two
main frameworks that can be used for achieving DP, i.e., the
framework with interaction for release, and the framework
with no interaction for publishing. In this paper, we will
focus on the latter, i.e., differentially private publishing.

In the previous work [1], we gave a the notion of
outsourcing differentially private data publishing. However,
there does not exist an efficient method that allows data
to be published only once while still preserving the data’s
utility for multiple evaluation algorithms and applications.
On one hand, when providers’ data need to be shared for
uses involving different tasks, different kinds of privacy
mechanisms have to be implemented on released data. That
is, datasets should be set appropriately to answer different
queries in different privacy budget/function of privacy
mechanisms. Consequently, the computation overhead and
interaction will be enormous if the number of queries is
large. On the other hand, when data providers publish their
data, public entities must exist somewhere that can store all
of the different kinds of data for applying different privacy
mechanisms, which also inevitably requires considerable
storage space.

To address these two kinds of challenges, we extend the
method of outsourcing differentially private data publishing
in this paper. With the advent of cloud computing, we
know an increasing number of storage and computing tasks
are moving from local resources to CSPs. In our scheme,
the implementation of privacy mechanisms is outsourced
to a CSP by the data providers. Considering the CSP
is not totally trusted, providers wish to protect sensitive
information in their datasets by secure techniques (e.g.,
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cryptographic schemes) before outsourcing the datasets.
However, to support ciphertext manipulations for the dif-
ferentially private data release/publishing, some secure
manners, such as fully homomorphic encryption (FHE)
schemes, will certainly introduce enormous amounts of
storages and communication bandwidths. To this end, our
differentially private data publishing scheme relies on some
secure building blocks which would be much more efficient
for implementing privacy mechanisms in an outsourcing
way. Moreover, to expand the form of records and the type
of queries for multiple evaluators, we proposed an advance
scheme based on a trusted execution environment to achieve
differential privacy aggregately. In both of our schemes, the
data providers are not required to be on-line when their data
are requested, which is one of the critical requirements for a
practical application system.

Data providerData evaluator

①.  Sending a Query, Q

②. Response the Result, O

Differential 

Privacy 

Algorithm③. Adding Noise on 

Result, O’

 Framework with Interaction (Release)

Framework with No Interaction (Publishing)

1.  Settle Privacy Budgets 

and Query Function

Figure 1: Frameworks for Achieving Differential Privacy

1.1 Related Work

Differential privacy has been accepted as the main pri-
vacy paradigm in recent years, because it is based on
purely mathematical calculations and provides a means
of quantitative assessment. A large body of work on DP
has accumulated due to its support for privacy preserv-
ing data analysis. There are some works which used the
cryptographic methods to solve the privacy preserving for
data utilization [2], [3] before the first work of DP by
Dwork in 2006 [4], and the Laplace mechanism for adding
noise to achieve ε-DP was proposed in the seminal paper.
Subsequently, McSherry designed the exponent mechanism
[5] and identified the sequential and parallel properties of
DP [6].

Generally, DP can be achieved via two main frameworks.
In the first framework, the data evaluator’s queries are
responsed under a predetermined privacy budget ε; as
shown in Fig 1 with red box. In the framework, we can
apply the Laplace [7], Privlet [8], Linear Query [9], and Batch
Query [10] techniques, among others, to obtain different
responses to these queries that satisfy ε-DP. However, this
framework demands interaction between the data provider

and the data evaluator. The second framework, as depicted
in Fig. 1 with the blue dashed box, does not require
any interaction. The main focus of research related to this
framework is on how to design efficient and effective noise-
adding algorithms to ensure DP while boosting data utility.

Typical publishing methods include histogram publish-
ing [11]–[14], partition publishing [15]–[18], contingency
table publishing [19], [20], and sanitized dataset publishing
[21]–[24]. A histogram is an intuitive representation of the
distribution of a set of data and can be used as a basis
for other statistical queries or linear queries. However,
histogram publishing suffers from problems of redundant
noise and inconsistency, meaning that different types of
noise should be added for different uses. Partition publish-
ing can reduce the amount of noise that must be added.
The foundation of partition publishing is the careful design
of an index structure to support the partitioning of the
data. Using this index, the data provider can assign a
privacy budget to each partition for noise addition before
publishing. However, determining how to assign a privacy
budget is not a trivial task, and the partition index itself
may leak some sensitive information; this potential risk is
the core problem that remains to be solved for this method
of publishing. Often, data can be represented in the form
of a contingency table. In fact, instead of publishing the
contingency table itself for analysis, data are often published
based on the statistical values of the combinations of
certain variables, as represented by marginal tables. Directly
adding noise to a contingency table introduces too much
noise, whereas perturbing the marginal table may cause
inconsistency. Qardaji proposed a noise-adding method in
which the contingency table is divided into small pieces,
called views [25]. This method can reduce the amount of
noise introduced, but the questions of how to choose the
parameters to be used for division and how to preserve
the consistency between the views and the marginal tables
remain challenging. The purpose of sanitized dataset pub-
lishing is to ensure the protection of data privacy after the
processing of the original dataset. The question on how to
directly publish a sanitized dataset that satisfies DP while
allowing the data evaluator to make any necessary inquiries
is quite challenging. This method of dataset publishing
demands considerable calculation and thus is inefficient and
difficult to realize. Kasiviswanathan and Blum proved that
sanitized dataset publishing is possible [26], [27]; however,
it requires an enormous number of records.

The multi-party DP scheme was first proposed by
Manas in 2010 [28], based on the aggregation of multi-
party datasets to train a classifier. Subsequently, many
works involving multi-party DP publishing have been
reported, including multi-task learning [29], multi-party
deep learning [30], classifier training on private and public
datasets [31] and high-dimensional data publishing [32].
These works, however, have not considered outsourced
computing to relieve the computational burden on data
providers. Our initial work [1] can provide frameworks for
data evaluators to efficiently analyze databases belonging to
a single party, but it has efficiency bottlenecks in the multi-
party setting.

Outsourced computing is a technique for securely
outsourcing expensive computations to untrusted servers,
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which allows resource-constrained data providers to
outsource their computational workloads to cloud servers
with unlimited computational resources. Chaum first
proposed the notion of wallets, secure hardware installed
on a client’s computer to perform expensive computations,
in 1992 [33]. To protect data providers’ privacy, Chevallier
ppresented the first algorithm for the secure delegation of
elliptic-curve pairings [34]. In addition, solutions for
performing meaningful computations over encrypted data
using fully homomorphic encryption have emerged,
although they are known to be of poor practicality [35].

Meanwhile, cloud computing using attribute-based en-
cryption appeared, which not only supports ciphertext
operation, but also provides fine-grained access control.
Some of works that concentrate on privacy preserving
in cloud computing have been proposed recentlyp [36],
[37]. Nevertheless, in this paper, we choose additive ho-
momorphic encryption as our basic technique to perform
outsourcing computing, which offers a perfect balance of
efficiency and security.

The software guard extensions (SGX) is a set of exten-
sions to the Intel architecture that aims to provide integrity
and confidentiality guarantees for computations performed
on an untrusted or remote hardware where all the privileged
software (kernel, hypervisor, etc) is potentially malicious.
Due to these properties, the SGX is widely applied for secure
outsourcing computations [38], including most machine
learning algorithms such as, SVM, matrix decomposition,
neural network, decision tree, and k-means [39]–[44].

1.2 Contributions

In this paper, we propose two novel outsourced DP data
publishing schemes for cloud computing. Our contributions
can be summarized as follows.

• Based on our previous work, we design a new pre-
processing method and give an efficient outsourced
data publishing approach using our secure building
blocks instead of fully homomorphic encryption. In
such a way, data can be efficiently outsourced to
a CSP for secure storage and implementation of
differential privacy mechanisms.

• For supporting multiple evaluators, We design an ad-
vance outsourced scheme based on SGX to aggregate
data providers’ datasets. In such a way, the responses
of data evaluators’ queries can achieve differential
privacy in an efficient way.

• In our scheme, the data provider is not required to
be involved in subsequent noise computations and
related processing.

• The security of the data against the CSP can be
guaranteed.

1.3 Organization

The rest of this paper is organized as follows. Some
preliminary considerations are discussed in Section 2. In
Section 3, the architecture of our scheme and our threat
model are introduced. Then, we present the problem state-
ment and describe our schemes in detail in Section 4.
In Section 5, we analyze the security of the proposed

scheme. The implementation details and the evaluation of
the experimental results are presented in Section 6. Finally,
we conclude our work in Section 7.

2 PRELIMINARIES

2.1 Differential Privacy

DP was introduced by Dwork et al. as a privacy standard for
individual privacy protection in data publishing. It provides
a strong privacy guarantee, ensuring that the presence or
absence of an individual will not significantly affect the final
output of any function.

Definition 1. (Differential privacy)
A randomized function A with a well-defined probability density
P satisfies ε-DP if, for any two neighboring datasets D1 and D2

that differ by only one record and for any O ∈ range(M),

P(A(D1) = O) ≤ eε · P(A(D2) = O) (1)

The sensitivity of a queried function f on the database
is an important concept for implementing privacy mech-
anisms such as Laplace mechanism and the exponential
mechanism. It is defined as follows.

Definition 2. (Global sensitivity)
Let f be a function that maps a database to a fixed-size vector of
real numbers. For all neighboring databasesDl andD2, the global
sensitivity of f is defined as

∆(f) = max
D1,D2

‖f(D1)− f(D2)‖1 (2)

where ‖ · ‖1 denotes the L1 norm.

To publish data that satisfy ε-DP for a queried function
f , the data provider should perturb the output of f by
the sensitivity ∆f and the privacy budget ε. For example,
for the Laplace mechanism, let Lap(λ) denote the Laplace
probability distribution with mean zero and scale λ. The
Laplace mechanism achieves DP by adding Laplace noise to
the query result f(M).

2.2 Homomorphic Encryption

We use [[·]] to denote ciphertexts of homomorphic encryp-
tion schemes in this paper. We say that an encryption
scheme is fully homomorphic if it conforms to the following
definition.

Definition 3. (Fully Homomorphic Encryption)
Let m1 and m2 be two plaintexts, let A be an encryption
algorithm that outputs the corresponding ciphertexts [[m1]]
and [[m2]], and let B be an operation (addition/multiplication)
performed on the two ciphertexts. For any two ciphertexts, fully
homomorphic encryption (FHE) has the following property:

B([[m1]], [[m2]]) = [[B(m1,m2)]] (3)

Similarly, the encryption scheme is additive homomor-
phic since it conforms to the following definition.

Definition 4. (Additive homomorphic encryption)
Let m1 and m2 be two plaintexts, let A be an encryption
algorithm that outputs the corresponding ciphertexts [[m1]] and
[[m2]], and let B be an operation performed on the two ciphertexts.
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For any two ciphertexts, additive homomorphic encryption (AHE)
has the following property:

B([[m1]], [[m2]]) = B(A(m1),A(m2)) = [[m1 +m2]] (4)

2.3 Intel SGX

Intel SGX is a trusted execution environment for executing
secure code in Intel processors. Programmers need to
partition the code into trusted and untrusted components.
The trusted code is encrypted and integrity protected, but
the untrusted code is observable by the operating system.
During the program execution, the untrusted component
creates a secure component inside the processor called
enclave and loads trusted code into it. After creating the
enclave, users can verify that intended code is loaded and
securely provision the code with Intel’s secret keys, which is
called attestation. In addition, trusted and untrusted compo-
nents communicate between each other using programmer
defined entry points. Entry points defined in trusted code
is called ECalls, which can be called by untrusted part
once enclave is loaded. Similarly, entry points defined in
untrusted code is called OCalls, which can be called by the
trusted part.

In another word, the SGX enclaves aim at isolating
execution of a program from all other processes on a un-
trusted host, but the enclave memory is fully encrypted and
authenticated. This property provide remote attestations
that a remote party can verify using Intel’s public key. It
is the security guarantees which SGX-based schemes rely
on.

3 ARCHITECTURE

In this section, we formalize our system model, and identify
the threat model and security requirements.

3.1 System Model

In our system model, three types of entities are involved
in our basic scheme, namely, the data providers, the cloud
service provider (CSP), and the data evaluator. The data
providers possess data and would like to share those data
for purposes such as machine learning or data analysis.
The CSP provides the cloud storage service for the data
providers. The data evaluator makes queries for data anal-
ysis and finally obtains the differentially private results.
Each data evaluator may acquire different part of data for
different usage.

3.2 Threat Model and Security Requirements

In this work, both the data evaluator and the CSP are
assumed to be honest-but-curious. The data evaluator needs
to protect his trained model against the CSP. Moreover, the
data evaluator will follow a specified protocol for building
a correct model without obtaining incorrect results. The
privacy of the data providers’ data needs to be protected
against both the CSP and the data evaluator.

For the data owner, the security means that its privacy
should be protected against the other entities even if they
are curious about the underlying original data. Of course,

the CSP and DP are not allowed to collude with each other
in our security model.

Suppose a data provider want to publish his data, our
goal is to process his data to meet the following security
requirements.
Data privacy: The query results should satisfy ε-differential
privacy.
Data utility: The query results should preserve as much
information as possible for classification analysis.

4 OUTSOURCED PRIVATE DATA PUBLISHING
SCHEMES

In this section, we give our outsourced private data pub-
lishing schemes. In more details, we apply some popular
privacy mechanisms, such as Laplace mechanism and the
exponential mechanism, as concrete constructions.

4.1 A Straightforward Scheme
Before the presentation of our schemes, there is a straight-
forward scheme used in outsourced differential privacy,
where a FHE is used. The typical process of differentially
private data publishing can be summarized as follows:

• Setup. The data evaluator and data provider together
establish the keys they used (pk, sk).

• Uploading. The data provider uploads the encrypted
dataset [M ]pk to the CSP using fully homomorphic
encryption.

• Data processing. CSP get the query f from data
evaluator and calculate the result in encrypted form
f([[M ]]pk) = [[f(M)]]pk. After the calculation of
global sensitity ∆f , CSP generates the noise η ∼
Lap(∆f/ε) and add it on the result [[f(M) + η]]pk.

• Analysis. The data evaluator obtains the encrypted
result with noise, decrypts it and analyzes it.

Generally speaking, the storage security of this scheme is
mainly based on FHE. The data privacy got a full rely on
the ε-DP. However, for different queries or different privacy
budgets, those steps mentioned above must be repeated,
which is inefficient, waste a lot of computing power.

4.2 An Advanced Scheme with AHE-based Building
Blocks
As we know, current non-interactive approaches usually
publish contingency tables or marginals of the raw data.
Most of these approaches will draw a frequency matrix of
the raw data over the database domain. After that, noise
is added to each count to satisfy the privacy requirement
before the publishing of noisy frequency matrix. In order
to support more machine learning tasks and more privacy
budgets, lots of data pre-processing work should be done by
data providers. In other words, data provider will consume
a lot of his computing power to construct different layers of
his data, which is a limit of our scheme. Also, even the CSP
will choose the suitable layer of data (count) to add noise,
there are few queries (range queries, count queries, etc...)
could be supported. Actually, each data provider should
pre-process his data, so called, generalization. We briefly
introduce generalization here.
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Definition 5. Generalization
Generalization is defined by a function Φ = {Φ1,Φ2, · · · ,Φd},
where Φi : v → p maps each value v ∈ Ω(Ai) to a p ∈ P (Ai).

Let D = {r1, · · · , rn} be a multiset of records, where
each record ri represents the information of an individual
with d attributes A = {A1, · · · , Ad}. We represent the data
set D in a tabular form. We assume that each attribute Ai
has a finite domain, denoted by Ω(Ai). The domain of D is
defined as Ω(D) = Ω(A1)×, · · · ,×Ω(Ad). To anonymize a
dataset D, generalization replaces a value of an attribute
with a more general value. The exact general value is
determined according to the attribute partition.

Definition 6. Attribute Partition
The partitions P (Ai) of a numerical attribute are the intervals
〈I1, I2, · · · , Ik〉 in Ω(Ai) such that

⋃k
j=1 Ij = Ω(Ai). For

categorical attribute, partitions are defined by a set of nodes from
the taxonomy tree such that it covers the whole tree, and each leaf
node belongs to exactly one partition.

We give an example of data generalization in Fig. 3. Data
provider will construct different layers of his data, which
should match to different type of query. If the query function
f is about the age, CSP could just add noise on layer y
instead of layer z.

Alternatively, as the straightforward method will cost a
lot of storage space and bandwidth, we are looking another
way to solve such problems. Inspired by Mohammed’s
method [15], we propose our scheme (Fig. 2) that consists of
our secure building blocks. The encryption [·] here is AHE
scheme which is more efficient than FHE schemes.

2. After Processing, Upload 

Encrypted Data , ||Counti||pk

4. Response Encrypted 

Noise Data

 || Count +η||pk

1. Multi-party 

Computing to Set a 

pair of keys (sk,pk)

3. Adding Noise After the 

Aggregation

CSP

P1

P2

Pn

Data providers Data evaluator

Figure 2: Using additive homomorphic encryption to
achieve outsourced differential privacy

The building blocks of our scheme could be summarized
as follows:

• Setup. Suppose that there are k data providers
and one data evaluator in the system, denoted by
P1,P2, · · · ,Pk and Pe, respectively. In this step, each
data provider/evaluator together to generate a pair
of keys (sk, pk) using secure multi-party computing.

• Data uploading. In this step, data providers will
pre-process their data before uploading. First, data
providers generalize their data according to the
Attribute Partition. Then each data provider en-
crypts his group count Counti using the public key
Enc(pk,Counti). After encryption, the ciphertext
[[Counti]] is sent to the cloud server.

• Noise addition. Firstly, CSP aggregates all data
providers’ group count as [[Count]]. Then CSP gets
the query function f from DE and choose the proper

layer of group count to add noise on. Then the
cloud server generates the noise η and uses the
Add([[Count]], [[η]]) algorithm to add noise to the
chosen layer of data providers’ group counts. After
the noise addition, the CSP sends [[Count+η]] to DE.

• Data analysis. The data evaluator uses
Dec([[Count + η]], sk) to obtain the noisy count
Count′ = Count+ η and do some machine learning
tasks.

The details of the procedures are shown in Algorithm 1.

Algorithm 1 Outsourced differential privacy scheme based
on secure building blocks

Input: Data providers (P): clean datasets M1,M2, · · · ,Mk;
Data evaluator (DE): query function f ;

Output: DE: group count with noise Count′;
1: Pi & DE: set a pair of keys {sk, pk};
2: for each i ∈ [1, · · · , k] do
3: Pi: generalize the dataset Counti ← G(Mi);
4: Pi: send the ciphertext [[Counti]]pk to CSP;
5: end for
6: CSP: aggregate all data providers’ data [[Count]]pk ←

Σki=1[[Counti]]pk;
7: CSP: send f to DE;
8: CSP: choose the suitable layer of data ∈ [[Count]]pk

depends on f ;
9: CSP: calculate the global sensitivity ∆f ;

10: CSP: generate the noise η ∼ X (∆f, ε), where X is a type
of distribution;

11: CSP: calculate [[Count+ η]]pk;
12: CSP: send ‖Count+ η‖pk to DE;
13: DE: decrypt the ciphertext to get noised data Count′ ←

Dec([[Count+ η]]pk, sk);
14: return Count′.

4.3 An Advanced Scheme Supporting Multiple Evalua-
tors
Suppose there are more than one data evaluator asking for
data, what should those schemes mentioned above to deal
with. Well, in straight-forward scheme and our scheme us-
ing additive homomorphic, the more data evaluators there
are, the more encrypted data with different key there should
be. Obviously, CSP, who is running these schemes, would
consume a lot of space for data storage; data providers,
whose data are outsourced to CSP, must spend more
computing power and time on his data uploading process
(pre-processing for different data evaluator, communication
with each data evaluator to settle different key for data
encryption). To support more data evaluators, we designed
our scheme for differentially private data publishing with
SGX, a trustworthy component for secure computing, see
Fig.4.

All operations about data providers’ secure data was
conducted in this component, no plain data should be ob-
tained outside SGX. The CSP only handles the transmitting
functions. In this way, even the CSP and data evaluators are
colluded, the data security can be guaranteed, which is a
very import property of our scheme compared to the others
above. Before contributing data, each provider Pi encrypts
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Figure 3: An example for data processing (Generalization)

its data with its own key ki by using a symmetric encryption
scheme [[[·]]]. The details of the procedure are shown in
Algorithm 2.

CSP

Data evaluator

P1

P2

Pn

Data providers

SGX

3.  Adding Noise on Result

Figure 4: Using SGX in scheme to support multiple data
evaluators

In this scheme, we use symmetric encryption instead of
public key encryption due to the fully trusted property of
SGX. With SGX’s help, CSP could decrypt the ciphertext
of data providers’ data and perform calculations over this
plaintext, which will save CSP a lot of time on operation.
Also, because of the result is in plaintext form, CSP could
use any data evaluator’s symmetric key ki to encrypt it. This
make our scheme differs from previous schemes that the
result is encrypted by specific data evaluator’s public key
and could only support one data evaluator. The evaluator
will finally get the noised query result r′ = f(M) + η.
So, the scheme is not only efficient, but also suitable for
multiple data evaluators. The storage security based on

Algorithm 2 Outsourced differential privacy scheme
supporting multiple data evaluators

Input: Data provider (P): clean datasets M1,M2, · · · ,Mk;
Data evaluator (DE): query function f ;

Output: DE: noisy result r′;
1: for each i ∈ [1, · · · , k] do
2: Pi: communicate with SGX of Pi to settle the

symmetric key ki;
3: Pi: encrypt Mi to ciphertext [[[Mi]]]ki ;
4: Pi: send [[[Mi]]]ki to CSP;
5: end for
6: DE: communicate with SGX of CSP to settle the

symmetric key ke;
7: CSP: communicate with DE and each Pi to get privacy

budget ε;
8: DE: send query f to CSP;
9: CSP: calculate the aggregation result M ←

Σki=1Dec([[[Mi]]]ki , ki) in SGX of CSP;
10: CSP: calculate the query result r ← Q(M) in SGX of

CSP;
11: CSP: calculate f ’s global sensitivity ∆f ← max

m,m′
‖f(m)−

f(m′)‖1 in SGX of CSP, where m and m′ are any two
records in the global set;

12: CSP: generate noisy result r′ ← r + η use parameters
(∆f, ε) in SGX of CSP;

13: CSP: encrypt the noisy result to ciphertext [[[r′]]]ke ;
14: CSP: send [[[r′]]]ke to DE;
15: DE: decrypt the ciphertext to get noised data r′ ←

Dec([[[Q(M) + η]]]ke , ke);
16: return r′.

symmetric encryption. The security of data privacy based
on the technique of SGX.
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5 SECURITY ANALYSIS

Clearly, our goals are to protect the data providers’ data
from any adversary (ADV). In this section, we only present
the security proof about data transmission process and noise
addition process. Note that, for the data storage process and
decryption process, since they depend on the encryption
algorithm applied, we will not discuss the security for the
two processes here.

The data flows are directed from the data provider to
the CSP and from the CSP to the data evaluator. Generally
speaking, an ADV may eavesdrop on the communication
flow from the data provider to the CSP rather than the data
from CSP to DE, which are often with noise and convinced
to be privacy-leakage-proof. However, even if the ADV
obtains a message in this way he cannot learn anything
from this message without the data evaluator’s secret key
sk. The data’s security depends on the encryption algorithm
used (e.g., Paillier). Therefore, we can assert that the ADV
cannot access private data even if the communication
flow is intercepted. Notice that, in our multi-data-evaluator
supporting scheme, data sending from data providers to
CSP are encrypted by the key owned by themselves and
SGX. CSP could even collude with data evaluators and any
of them cannot reveal the private data of any data providers
due to the lack of symmetric key.

Also, all the operations during noise addition procedure
that have access to plaintext were conducted in SGX and
SGX could be fully trusted to keep anyone from the data
inside itself. So the data privacy during noise addition could
be guaranteed.

6 EVALUATION

In this section, we evaluate the performance of our schemes
in terms of functionality, computational overhead and com-
munication overhead. All experiments were conducted on a
PC with a 3.40 GHz Intel I7-6700 CPU with Radeon(TM) R5
240 and 8 GB of RAM.

6.1 Scheme Supporting Multiple Data Evaluators with
AHE
This scheme uses AHE to support non-interactive data pub-
lishing, which could help data providers go offline and save
a lot of storage cost. So we will evaluate its functionality to
prove it is effective; evaluate its computational overhead to
prove it is efficient. It is obvious that data providers could
safe a lot storage space for their data storage once they go
offline, so we will not evaluate its communication overhead.

6.1.1 Functionality
We used datasets acquired from the UCI machine learning
repository, which can be downloaded from UCI1, to evaluate
our scheme’s functionality. We reserved 1

10 of each dataset
to serve as a test dataset, and we chose ε = 0.1 as our
privacy budget. For simplicity, we use Laplace mechanism
to generate noises.

Definition 7. (Laplace mechanism)
Let m be a record in database M (m ∈M ), and let η be a random

1. http://archive.ics.uci.edu/ml/

variable such that η ∼ Lap(∆f/ε). The Laplace mechanism is
defined as follows:

f ′(m) = f(m) + η. (5)

In the aspect of publishing data via non-interaction
framework, we mainly care about the data utility. Therefore,
we compare the accuracy of the two classification results.
One is the data published by scheme using additive ho-
momorphic encryption. The other one is the original data.
Fig. 5(a) shows the accuracies of training KNN and Naive
Bayes classifiers for Adult, Letter Recognition, CPU, Glass
and EEG Eye State. From the figure, we can see that training
a classifier on the noisy data instead of the original data
exerts little influence on the classifier performance, which
means our scheme is feasible.

6.1.2 Computational Overhead

We use Paillier as our additive homomorphic encryption
algorithm in non-interactive publishing scheme.

As seen in Fig. 5(b), each enc/dec operation takes 30ms
in Paillier, far less than 500ms in FHE. Moreover, it takes
only 48ms to perform 1000 addition operations on ciphertext
using Paillier. Most of the operations in our scheme is noise
addition, so our scheme is efficient enough to be applied.

6.2 Scheme Supporting Multiple Data Evaluators with
SGX

6.2.1 Functionality

The scheme’s functionality can be seen in Fig. 6(a), its accu-
racy is similar to the scheme using additive homomorphic
encryption.

6.2.2 Computational Overhead

We choose AES-256 as our symmetric encryption algorithm,
running in SGX’s enclave. All the data are decrypted in
SGX’s enclave to build a larger dataset (Adult, 45, 222 census
records) for calculating the result to all the queries from
data evaluators. It only takes milliseconds to have our noise
generated and added. So we care more about the I/O and
enc/dec speed in SGX. As seen in Fig. 6(b), AES-256 only
costs 80ms to perform 1000 enc/dec operations (faster than
Paillier). And it takes 4s to process the whole Adult dataset,
see Fig. 6(c), which is more quicker than straight-forward
scheme using FHE. Because the computational overhead is
low enough, our scheme is acceptable and feasible.

6.2.3 Communication Overhead

Our scheme include two phases that incur communication
costs, including data uploading and data analysis. It cost
only Bytes to send a result from CSP to DE, so we only
check the communication overhead during data uploading.
In the data uploading phase (see Fig 6(d)), the size of the
message sent from data providers to CSP is growing linear
with the increase of dataset itself.
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Figure 6: Performance of Advance Scheme

7 CONCLUSIONS

In this paper, we addressed the issues of inefficiency due
to implementation of different privacy mechanisms for dif-
ferentially private publishing. Specifically, we proposed our
efficient and secure outsourced differential privacy schemes.
The one scheme makes secure outsourcing publishing more
efficient by using our preprocessing method and secure
building blocks. The other scheme expands the secure data
publishing to a multi-evaluator scenario. In both schemes,
the data providers are not required to be on-line when the
query on their data is requested. The experiment showed

that the efficiency of our new scheme compared with the
basic solutions. In future work, we will consider optimize
the algorithm used in SGX to boost efficiency. In addition,
we are also interested in researching special encryption
algorithms that permit smart and efficient implementation
of privacy mechanisms.
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